Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As one of the most important parameters of biochemical analysis and detection, the pH value plays a very important role in cell function, food preservation and production, soil and water sources, and other applications. This makes it increasingly important to explore pH detection methods in depth. In this paper, a pH-responsive SERS probe based on the cyano Raman Tag was designed to realize pH sensing detection through the influence of the pH value of analytes on the displacement of the cyano Raman peak in the SERS probe. This cyano Raman tag exhibited not only excellent sensitivity in the liner range of pH 3.0–9.0 with a limit of detection (LOD) of pH 0.33, but also the anti-interference performance and stability (the relative standard deviation (RSD) was calculated to be 6.68%, n = 5). These results indicated that this pH SERS probe with the Raman cyano tag can provide new research ideas for future biological detection, bioimaging, and environmental detection.

Details

Title
Design and Detection of Cyanide Raman Tag pH-Responsive SERS Probes
Author
Shen, Jingjing 1 ; Liu, Guan 1 ; Zhang, Wen 1 ; Shi, Wenwen 1 ; Zhou, Yang 1 ; Yu, Zejie 1 ; Qunbo Mei 1 ; Zhang, Lei 1   VIAFID ORCID Logo  ; Huang, Wei 2 

 Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China 
 Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China 
First page
21
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767186161
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.