Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The DNA damage response (DDR) is frequently altered in ovarian cancer (OC), which can be exploited for therapeutic purposes. Moreover, targeting DDR signaling pathways has become an attractive strategy for increasing the effect of DNA-damaging drugs and overcoming chemoresistance. Here, we review the main DDR pathways and their alterations in OC. We also recapitulate the preclinical and clinical studies that target the DDR for the treatment of the disease.

Abstract

The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.

Details

Title
DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities
Author
Ovejero-Sánchez, María 1   VIAFID ORCID Logo  ; González-Sarmiento, Rogelio 1   VIAFID ORCID Logo  ; Herrero, Ana Belén 1   VIAFID ORCID Logo 

 Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain; Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain 
First page
448
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767188620
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.