Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to deal with the problem space-time adaptive processing (STAP) performance degradation of an airborne phased array system caused by the serious shortage of independent and identical distributed (IID) training samples in the nonhomogeneous clutter environment, an improved direct data domain method based on sparse Bayesian learning is proposed in this paper, which only uses a single snapshot data of a cell under test (CUT) to suppress the clutter and has fast computational speed. Firstly, three hyper-parameters required to obtain the sparse solution are derived. Secondly, the comparative analysis of their iterative formulas is made, and the piecewise iteration of hyper-parameter that has an obvious influence on the computational complexity of obtaining sparse solution is presented. Lastly, with the approximate prior information of the target, the clutter sparse solution is given and its covariance matrix is effectively estimated to calculate the adaptive filter weight and realize the clutter suppression. Simulation results verify that the proposal can dramatically decrease the computational burden while keeping the superior heterogeneous clutter suppression performance.

Details

Title
Fast Heterogeneous Clutter Suppression Method Based on Improved Sparse Bayesian Learning
Author
Wang, Qiang 1   VIAFID ORCID Logo  ; Zhang, Yani 1 ; Li, Zhihui 2 ; Zhao, Weihu 1 

 College of Information and Communication, National University of Defense Technology, Wuhan 430035, China 
 College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China 
First page
343
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767199427
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.