Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Food hydrogels are biopolymeric materials made from food-grade biopolymers with gelling properties (proteins and polysaccharides) and a 3D network capable of incorporating large amounts of water. They have sparked considerable interest because of their potential and broad application range in the biomedical and pharmaceutical sectors. However, hydrogel research in the field of food science is still limited. This knowledge gap provides numerous opportunities for implementing their unique properties, such as high water-holding capacity, moderated texture, compatibility with other substances, cell biocompatibility, biodegradability, and high resemblance to living tissues, for the development of novel, functional food matrices. For that reason, this article includes a bibliometric analysis characterizing research trends in food protein–polysaccharide hydrogels (over the last ten years). Additionally, it characterizes the most recent developments in hydrogel induction methods and the most recent application progress of hydrogels as food matrices as carriers for the targeted delivery of bioactive compounds. Finally, this article provides a future perspective on the need to evaluate the feasibility of using plant-based proteins and polysaccharides to develop food matrices that protect nutrients, including bioactive substances, throughout processing, storage, and digestion until they reach the specific targeted area of the digestive system.

Details

Title
Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery—A Bibliometric Review
Author
Hilal, Adonis  VIAFID ORCID Logo  ; Florowska, Anna  VIAFID ORCID Logo  ; Wroniak, Małgorzata  VIAFID ORCID Logo 
First page
68
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23102861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767206572
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.