Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Internet of Things (IoT) is a key technology for smart community networks, such as smart-city environments, and its evolution calls for stringent performance requirements (e.g., low delay) to support efficient communication among a wide range of objects, including people, sensors, vehicles, etc. At the same time, these ecosystems usually adopt wireless mesh technology to extend their communication range in large-scale IoT deployments. However, due to the high range of coverage, the smart-city WMNs may face different network challenges according to the network characteristic, for example, (i) areas that include a significant number of wireless nodes or (ii) areas with frequent dynamic changes such as link failures due to unstable topologies. Named-Data Networking (NDN) can enhance WMNs to meet such IoT requirements, thanks to the content naming scheme and in-network caching, but it necessitates adaptability to the challenging conditions of WMNs. In this work, we aim at efficient end-to-end NDN communication in terms of performance (i.e., delay), performing extended experimentation over a real WMN, evaluating and discussing the benefits provided by two SDN-based NDN strategies: (1) a dynamic SDN-based solution that integrates the NDN operation with the routing decisions of a WMN routing protocol; (2) a static one which based on SDN-based clustering and real WMN performance measurements. Our key contributions include (i) the implementation of two types of NDN path selection strategies; (ii) experimentation and data collection over the w-iLab.t Fed4FIRE+ testbed with real WMN conditions; (ii) real measurements released as open-data, related to the performance of the wireless links in terms of RSSI, delay, and packet loss among the wireless nodes of the corresponding testbed.

Details

Title
Logically-Centralized SDN-Based NDN Strategies for Wireless Mesh Smart-City Networks
Author
Kalafatidis, Sarantis 1   VIAFID ORCID Logo  ; Skaperas, Sotiris 1   VIAFID ORCID Logo  ; Demiroglou, Vassilis 2 ; Mamatas, Lefteris 1   VIAFID ORCID Logo  ; Tsaoussidis, Vassilis 2   VIAFID ORCID Logo 

 Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece 
 Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece 
First page
19
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767206678
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.