Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cyberattacks always remain the major threats and challenging issues in the modern digital world. With the increase in the number of internet of things (IoT) devices, security challenges in these devices, such as lack of encryption, malware, ransomware, and IoT botnets, leave the devices vulnerable to attackers that can access and manipulate the important data, threaten the system, and demand ransom. The lessons from the earlier experiences of cyberattacks demand the development of the best-practices benchmark of cybersecurity, especially in modern Smart Environments. In this study, we propose an approach with a framework to discover malware attacks by using artificial intelligence (AI) methods to cover diverse and distributed scenarios. The new method facilitates proactively tracking network traffic data to detect malware and attacks in the IoT ecosystem. Moreover, the novel approach makes Smart Environments more secure and aware of possible future threats. The performance and concurrency testing of the deep neural network (DNN) model deployed in IoT devices are computed to validate the possibility of in-production implementation. By deploying the DNN model on two selected IoT gateways, we observed very promising results, with less than 30 kb/s increase in network bandwidth on average, and just a 2% increase in CPU consumption. Similarly, we noticed minimal physical memory and power consumption, with 0.42 GB and 0.2 GB memory usage for NVIDIA Jetson and Raspberry Pi devices, respectively, and an average 13.5% increase in power consumption per device with the deployed model. The ML models were able to demonstrate nearly 93% of detection accuracy and 92% f1-score on both utilized datasets. The result of the models shows that our framework detects malware and attacks in Smart Environments accurately and efficiently.

Details

Title
Distributed Deep Neural-Network-Based Middleware for Cyber-Attacks Detection in Smart IoT Ecosystem: A Novel Framework and Performance Evaluation Approach
Author
Bhandari, Guru  VIAFID ORCID Logo  ; Lyth, Andreas; Shalaginov, Andrii  VIAFID ORCID Logo  ; Tor-Morten Grønli  VIAFID ORCID Logo 
First page
298
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767207413
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.