Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, ensemble-based machine learning models with gradient boosting machine and random forest are proposed for predicting the power production from six different solar PV systems. The models are based on three year’s performance of a 1.2 MW grid-integrated solar photo-voltaic (PV) power plant. After cleaning the data for errors and outliers, the model features were chosen on the basis of principal component analysis. Accuracies of the developed models were tested and compared with the performance of models based on other supervised learning algorithms, such as k-nearest neighbour and support vector machines. Though the accuracies of the models varied with the type of PV systems, in general, the machine learned models developed under the study could perform well in predicting the power output from different solar PV technologies under varying working environments. For example, the average root mean square error of the models based on the gradient boosting machines, random forest, k-nearest neighbour, and support vector machines are 17.59 kW, 17.14 kW, 18.74 kW, and 16.91 kW, respectively. Corresponding averages of mean absolute errors are 8.28 kW, 7.88 kW, 14.45 kW, and 6.89 kW. Comparing the different modelling methods, the decision-tree-based ensembled algorithms and support vector machine models outperformed the approach based on the k-nearest neighbour method. With these high accuracies and lower computational costs compared with the deep learning approaches, the proposed ensembled models could be good options for PV performance predictions used in real and near-real-time applications.

Details

Title
Ensemble Machine Learning for Predicting the Power Output from Different Solar Photovoltaic Systems
Author
Raj, Veena 1   VIAFID ORCID Logo  ; Sam-Quarcoo Dotse 2   VIAFID ORCID Logo  ; Sathyajith, Mathew 3 ; Petra, M I 1 ; Yassin, Hayati 1 

 Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei 
 School of Sustainable Development, University of Environment and Sustainable Development, Private Mail Bag, Somanya, Ghana 
 Faculty of Engineering and Science, University of Agder, Jon Lilletunsvei 9, 4879 Grimstad, Norway 
First page
671
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767214657
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.