Full text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aerodynamic forces due to blade-tip clearance eccentricity are a known destabilizing source in rotating machinery with unshrouded impellers. Dynamic forces also appear in shrouded impellers, due to changes in the pressure in the gap between the impeller casing and its shroud. These are load-dependent forces typically characterized by a cross-coupled stiffness coefficient (k > 0). This paper reviews the archival literature for quantification of blade-tip clearance induced forces and impeller-casing forces in both unshrouded and shrouded turbines and compressors. Most distinctive are the lack of experimental results and the indiscriminate application of simple formulas to predict k, including Alford’s and Wachel’s equations. The disparity in estimations of the destabilizing k extends to recent CFD models and results. Hence, rotordynamic predictions vary widely. This review reveals that engineering practice ignores accurate physical models that could bridge the gap between practice and theory. As the energy market shifts toward carbon capture and hydrogen compression, accurate knowledge of aerodynamic forces from unshrouded compressors and open impellers will become necessary in multi-stage rotors.

Details

Title
A Review of Turbine and Compressor Aerodynamic Forces in Turbomachinery
Author
Luis San Andrés  VIAFID ORCID Logo 
First page
26
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767234210
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.