Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The close relation between spatial kinematics and line geometry has been proven to be fruitful in surface detection and reconstruction. However, methods based on this approach are limited to simple geometric shapes that can be formulated as a linear subspace of line or line element space. The core of this approach is a principal component formulation to find a best-fit approximant to a possibly noisy or impartial surface given as an unordered set of points or point cloud. We expand on this by introducing the Gaussian process latent variable model, a probabilistic non-linear non-parametric dimensionality reduction approach following the Bayesian paradigm. This allows us to find structure in a lower dimensional latent space for the surfaces of interest. We show how this can be applied in surface approximation and unsupervised segmentation to the surfaces mentioned above and demonstrate its benefits on surfaces that deviate from these. Experiments are conducted on synthetic and real-world objects.

Details

Title
Surface Approximation by Means of Gaussian Process Latent Variable Models and Line Element Geometry
Author
De Boi, Ivan 1   VIAFID ORCID Logo  ; Ek, Carl Henrik 2   VIAFID ORCID Logo  ; Penne, Rudi 1   VIAFID ORCID Logo 

 Research Group InViLab, Department Electromechanics, Faculty of Applied Engineering, University of Antwerp, B 2020 Antwerp, Belgium 
 Department of Computer Science and Technology University of Cambridge, Cambridge CB3 0FD, UK 
First page
380
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767235307
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.