Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Heusler alloy research has increased considerably in recent years. This is mostly due to their strong desire to develop future smart device applications. However, many limiting variables remain for researchers to overcome in order to enhance their functional properties. The poor mechanical properties of these alloys restrict their use as solid-state cooling materials in magnetic refrigeration devices. A promising strategy, resulting in novel compounds with better mechanical properties and substantial magnetocaloric effects, is favoring the dd hybridization with transition-metal elements to replace pd hybridization. The term given to these materials is “all-d-metal”. In light of recent experimental results of the magnetocaloric effect and the increased mechanical characteristics in these alloys (with complex crystallographic behavior due to off-stoichiometry and disorder), a review of this advanced functional behavior is offered. Moreover, the impact of the substitution of transition metal for the p-group to increase mechanical ductility and considerable magnetocaloric effects has also been addressed. These Heusler alloys are a potential new class of materials for technological applications because of their optimum functional behavior. Finally, we highlighted the potential challenges and unsolved issues in order to guide future studies on this topic.

Details

Title
All-d-Metal Heusler Alloys: A Review
Author
Bachagha, Tarek 1   VIAFID ORCID Logo  ; Joan-Josep Suñol 2   VIAFID ORCID Logo 

 Physics Department, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China; Physics Department, Campus Montilivi s/n, Universitat de Girona, 17071 Girona, Spain 
 Physics Department, Campus Montilivi s/n, Universitat de Girona, 17071 Girona, Spain 
First page
111
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767250417
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.