Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the problems of large elastic deformation and low machining accuracy in cutting titanium alloy thin-walled parts, this paper establishes the finite element model of milling titanium alloy thin-walled parts, and simulates and analyses the milling process of titanium alloy thin-walled parts by the statics analysis module of ANSYS 15.0 software. The maximum deformation point of the workpiece in the milling process is determined. Then the combination of cutting parameters that can minimize the deformation is determined by the orthogonal experiments of four factors and four levels. This paper designs the single factor experiments, which study the distribution of the milling force and the deformation law of the parts in the milling process. Moreover, this paper carries out the optimal design of the cutting parameters by orthogonal experiments, which provides a reference for the selection of the cutting parameters for the bending thin-walled parts of titanium alloy.

Details

Title
Finite Element Simulation of Bending Thin-Walled Parts and Optimization of Cutting Parameters
Author
Ma, Hailong 1 ; Tang, Aijun 2 ; Xu Shubo 1 ; Li, Tong 2 

 School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China 
 School of Mechanical and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China 
First page
115
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767251047
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.