Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fifty years ago Susumu Ohno formulated the famous C-value paradox, which states that there is no correlation between the physical sizes of the genome, i.e., the amount of DNA, and the complexity of the organism, and highlighted the problem of genome redundancy. DNA that does not have a positive effect on the fitness of organisms has been characterized as “junk or selfish DNA”. The controversial concept of junk DNA remains viable. Rye is a convenient subject for yet another test of the correctness and scientific significance of this concept. The genome of cultivated rye, Secale cereale L., is considered one of the largest among species of the tribe Triticeae and thus it tops the average angiosperm genome and the genomes of its closest evolutionary neighbors, such as species of barley, Hordeum (by approximately 30–35%), and diploid wheat species, Triticum (approximately 25%). The review provides an analysis of the structural organization of various regions of rye chromosomes with a description of the molecular mechanisms contributing to their size increase during evolution and the classes of DNA sequences involved in these processes. The history of the development of the concept of eukaryotic genome redundancy is traced and the current state of this problem is discussed.

Details

Title
Genetic Redundancy in Rye Shows in a Variety of Ways
Author
Vershinin, Alexander V 1   VIAFID ORCID Logo  ; Elisafenko, Evgeny A 2 ; Evtushenko, Elena V 1 

 Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia 
 Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia 
First page
282
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22237747
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767256112
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.