Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The spatial–temporal prediction of traffic flow is very important for traffic management and planning. The most difficult challenges of traffic flow prediction are the temporal feature extraction and the spatial correlation extraction of nodes. Due to the complex spatial correlation between different roads and the dynamic trend of time patterns, traditional forecasting methods still have limitations in obtaining spatial–temporal correlation, which makes it difficult to extract more valid information. In order to improve the accuracy of the forecasting, this paper proposes a multi-scale temporal dual graph convolution network for traffic flow prediction (MD-GCN). Firstly, we propose a gated temporal convolution based on a channel attention and inception structure to extract multi-scale temporal dependence. Then, aiming at the complexity of the traffic spatial structure, we develop a dual graph convolution module including the graph sampling and aggregation submodule (GraphSAGE) and the mix-hop propagation graph convolution submodule (MGCN) to extract the local correlation and global correlation between neighbor nodes. Finally, extensive experiments are carried out on several public traffic datasets, and the experimental results show that our proposed algorithm outperforms the existing methods.

Details

Title
MD-GCN: A Multi-Scale Temporal Dual Graph Convolution Network for Traffic Flow Prediction
Author
Huang, Xiaohui; Wang, Junyang; Lan, Yuanchun; Jiang, Chaojie; Yuan, Xinhua
First page
841
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767291069
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.