Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Time series forecasting is a very vital research topic. The scale of time series in numerous industries has risen considerably in recent years as a result of the advancement of information technology. However, the existing algorithms pay little attention to generating large-scale time series. This article designs a state causality and adaptive covariance decomposition-based time series forecasting method (SCACD). As an observation sequence, the majority of time series is generated under the influence of hidden states. First, SCACD builds neural networks to adaptively estimate the mean and covariance matrix of latent variables; Then, SCACD employs causal convolution to forecast the distribution of future latent variables; Lastly, to avoid loss of information, SCACD applies a sampling approach based on Cholesky decomposition to generate latent variables and observation sequences. Compared to existing outstanding time series prediction models on six real datasets, the model can achieve long-term forecasting while also being lighter, and the forecasting accuracy is improved in the great majority of the prediction tasks.

Details

Title
State Causality and Adaptive Covariance Decomposition Based Time Series Forecasting
Author
Wang, Jince 1 ; He, Zibo 1 ; Geng, Tianyu 1 ; Huang, Feihu 1 ; Gong, Pu 2 ; Peiyu Yi 1 ; Peng, Jian 1 

 College of Computer Science, Sichuan University, Chengdu 610065, China 
 College of Innovation and Entrepreneurship, Shijiazhuang Institute of Technology, Shijiazhuang 050228, China 
First page
809
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767294639
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.