Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper studies the secrecy communication threatened by a single eavesdropper in Energy Harvesting (EH)-based cognitive radio networks, where both the Secure User (SU) and the jammer harvest, store, and utilize RF energy from the Primary Transmitter (PT). Our main goal is to optimize the time slots for energy harvesting and wireless communication for both the secure user as well as the jammer to maximize the long-term performance of secrecy communication. A multi-agent Deep Reinforcement Learning (DRL) method is proposed for solving the optimization of resource allocation and performance. Specifically, each sub-channel from the Secure Transmitter (ST) to the Secure Receiver (SR) link, along with the jammer to the eavesdropper link, is regarded as an agent, which is responsible for exploring optimal power allocation strategy while a time allocation network is established to obtain optimal EH time allocation strategy. Every agent dynamically interacts with the wireless communication environment. Simulation results demonstrate that the proposed DRL-based resource allocation method outperforms the existing schemes in terms of secrecy rate, convergence speed, and the average number of transition steps.

Details

Title
Deep Reinforcement Learning for Physical Layer Security Enhancement in Energy Harvesting Based Cognitive Radio Networks
Author
Lin, Ruiquan 1 ; Qiu, Hangding 1 ; Jiang, Weibin 1 ; Jiang, Zhenglong 1 ; Li, Zhili 2 ; Wang, Jun 1 

 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China 
 College of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore 
First page
807
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767296280
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.