Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Efforts to improve air quality and concerns about global warming make transportation mediums that do not produce emissions more attractive to end users. Meanwhile, some of these transportation mediums are powered by an electricity grid that generates a great deal of emissions. This study compared the greenhouse gas GHG emissions for both electric and fossil-powered vehicles using estimates of tailpipe emissions of fossil-powered vehicles and the indirect emissions from the electricity grid. Furthermore, a system dynamic model was developed for a more holistic review of the GHG emissions for both electric and fossil-powered vehicles. The result indicated that in terms of associated emissions from the grid, electric-powered vehicles are not always better than fossil-powered vehicles when the electricity is not from a renewable source. The GHG emissions for electric-powered vehicles are dependent on both the electricity usage rate of the vehicle and the GHG emissions that are associated with the production of that amount of electricity. Further opportunities exist in renewable and clean energy technologies for various operations. Based on reports from previous works, this report also presented potential strategies to achieve a significant reduction in GHG emissions for both the electricity grid and fossil fuel refining processes.

Details

Title
Assessing and Managing the Direct and Indirect Emissions from Electric and Fossil-Powered Vehicles
Author
Mofolasayo, Adekunle
First page
1138
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767300516
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.