It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
INTRODUCTION: Standard treatment for chronic lymphocytic leukemia (CLL) has experienced a dramatic change over the last few years. Until recently, CLL was treated using chemoimmunotherapy (CIT) with anti-CD20 monoclonal antibodies. Even though novel agents such as BTKi (Bruton Tyrosine Kinase inhibitor) and BCL2 inhibitors are the standard of care in most therapeutic settings, CIT still has its place in CLL treatment. Interestingly, little is known about its effects on the immune system of patients with CLL. Contrary to the reduction of the number of CLL cells during CIT administration, little attention has been paid to the cellular microenvironment, the evaluation of which during treatment may provide additional information about the course of the disease and prognosis and therefore was set as the aim of this study.
MATERIAL AND METHODS: Flow cytometry was used to evaluate the phenotypes of different populations and subpopulations of lymphocytes in the peripheral blood (PB) of 20 patients with CLL before, during, and after CIT.
RESULTS: During the CIT with R-FC (Rituximab, Fludarabine, and Cyclophosphamide) and R-B (Rituximab, Bendamustine) regimens, the sizes of the assessed populations and subpopulations of lymphocytes were dramatically reduced. Twenty-eight days after the first course of treatment, the exponential decrease of CLL cells was observed, and their number had declined to the median level of 10% of the numbers observed before the treatment. T cells, NK cells, NKCD56dim, NKT-like, and NKT-like CD56dim also decreased exponentially. After the second treatment course, a decline in the numbers of T, NK, NKCD56dim, NKT-like, and NKT-like CD56dim cells was observed, which were stable until the sixth treatment course. However, the number of NKT-like CD56bright cells decreased to the third course of treatment and then increased. The number of CLL cells in peripheral blood correlated with the number of NKCD56bright cells, influencing the treatment response.
CONCLUSIONS: Upon CIT, the reduction of CLL cells is accompanied by shifts in immune cell populations, T, NK, and NKT-like cells. Monitoring changes of those cell populations in the peripheral blood may serve as an important predictive and prognostic indicator.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Flow Cytometry Laboratory, Pathology and Laboratory Diagnostics Department, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
2 Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
3 Polish Academy of Sciences, Department: Nałęcz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland. [email protected]