Abstract

Liquid – liquid phase separation (LLPS) is an emerging phenomenon involved in various biological processes. The formation of phase-separated condensates is crucial for many intrinsically disordered proteins to fulfill their biological functions. Using the recombinant protein to reconstitute the formation of condensates in vitro has become the standard method to investigate the behavior and function of LLPS. Meanwhile, there is an urgent need to characterize the LLPS in living cells. Importantly, condensates formed through LLPS at physical relevant concentrations are often smaller than the optical diffraction limit, which makes precise characterization and quantification inaccurate due to the scatter of light. The booming development of super-resolution optical microscopy enables the visualization of multiple obscured subcellular components and processes, which is also suitable for the LLPS research. In this protocol, we provide step-by-step instructions to help users take advantage of super-resolution imaging to depict the morphology and quantify the molecule number of endogenous condensates in living cells using RNA Pol II as an example. This streamlined workflow offers exceptional robustness, sensitivity, and precision, which could be easily implemented in any laboratory with an inverted total internal reflection microscope. We expect that super-resolution microscopy will contribute to the investigation of both large and tiny condensates under physiological and pathological conditions and lead our understanding of the mechanism of LLPS to a higher and deeper layer.

Details

Title
Characterization of liquid–liquid phase separation using super-resolution and single-molecule imaging
Author
Zhang Hongchen; Shao Shipeng; Sun, Yujie
Pages
2-13
Section
Protocol
Publication year
2022
Publication date
2022
Publisher
Institute of Biophysics
ISSN
23643439
e-ISSN
23643420
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2769821286
Copyright
© 2022. This article is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.