It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Software vulnerability detection is one of the key tasks in the field of software security. Detecting vulnerability in the source code in advance can effectively prevent malicious attacks. Traditional vulnerability detection methods are often ineffective and inefficient when dealing with large amounts of source code. In this paper, we present the BBVD approach, which treats high-level programming languages as another natural language and uses BERT-based models in the natural language processing domain to automate vulnerability detection. Our experimental results on both SARD and Big-Vul datasets demonstrate the good performance of the proposed BBVD in detecting software vulnerability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





