Full Text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The seasonal cycle of the Antarctic sea ice extent is strongly asymmetric, with a relatively slow increase after the summer minimum followed by a more rapid decrease after the winter maximum. This cycle is intimately linked to the seasonal cycle of the insolation received at the top of the atmosphere, but sea ice processes as well as the exchanges with the atmosphere and ocean may also play a role. To quantify these contributions, a series of idealized sensitivity experiments have been performed with an eddy-permitting (1/4) NEMO-LIM3 (Nucleus for European Modelling of the Ocean–Louvain-la-Neuve sea ice model version 3) Southern Ocean configuration, including a representation of ice shelf cavities, in which the model was either driven by an atmospheric reanalysis or coupled to the COSMO-CLM2 regional atmospheric model. In those experiments, sea ice thermodynamics and dynamics as well as the exchanges with the ocean and atmosphere are strongly perturbed. This perturbation is achieved by modifying snow and ice thermal conductivities, the vertical mixing in the ocean top layers, the effect of freshwater uptake and release upon sea ice growth and melt, ice dynamics, and surface albedo. We find that the evolution of sea ice extent during the ice advance season is largely independent of the direct effect of the perturbation and appears thus mainly controlled by initial state in summer and subsequent insolation changes. In contrast, the melting rate varies strongly between the experiments during the retreat, in particular if the surface albedo or sea ice transport are modified, demonstrating a strong contribution of those elements to the evolution of ice coverage through spring and summer. As with the advance phase, the retreat is also influenced by conditions at the beginning of the melt season in September. Atmospheric feedbacks enhance the model winter ice extent response to any of the perturbed processes, and the enhancement is strongest when the albedo is modified. The response of sea ice volume and extent to changes in entrainment of subsurface warm waters to the ocean surface is also greatly amplified by the coupling with the atmosphere.

Details

Title
Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere
Author
Goosse, Hugues 1   VIAFID ORCID Logo  ; Sofia Allende Contador 1 ; Bitz, Cecilia M 2 ; Blanchard-Wrigglesworth, Edward 2 ; Eayrs, Clare 3   VIAFID ORCID Logo  ; Fichefet, Thierry 1 ; Himmich, Kenza 4 ; Pierre-Vincent Huot 5 ; Klein, François 1 ; Marchi, Sylvain 5   VIAFID ORCID Logo  ; Massonnet, François 1   VIAFID ORCID Logo  ; Mezzina, Bianca 1   VIAFID ORCID Logo  ; Pelletier, Charles 6   VIAFID ORCID Logo  ; Roach, Lettie 7   VIAFID ORCID Logo  ; Vancoppenolle, Martin 1   VIAFID ORCID Logo  ; Nicole P M van Lipzig 5   VIAFID ORCID Logo 

 Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium 
 Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA 
 Korea Polar Research Institute, Incheon, South Korea 
 Laboratoire d'Océanographie et du Climat (LOCEAN-IPSL), Sorbonne Université, CNRS, IRD, MNHN, Paris, France 
 Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium 
 European Centre for Medium-Range Weather Forecasts, Bonn, Germany 
 NASA Goddard Institute for Space Studies, New York, NY, USA; Center for Climate Systems Research, Columbia University, New York, NY, USA 
Pages
407-425
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2770934465
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.