Content area

Abstract

Influence Maximization (IM) is to identify the seed set to maximize information dissemination in a network. Elegant IM algorithms could naturally extend to cases where each node is equipped with a specific weight, reflecting individual gains to measure the node's importance. Prevailing literature typically assumes such individual gains remain constant throughout the cascade process and are solvable through explicit formulas based on the node's characteristics and network topology. However, this assumption is not always feasible for two reasons: 1)Unobservability: The individual gains of each node are primarily evaluated by the difference between the outputs in the activated and non-activated states. In practice, we can only observe one of these states, with the other remaining unobservable post-propagation. 2)Environmental sensitivity: In addition to the node's inherent properties, individual gains are also sensitive to the activation status of surrounding nodes, which is dynamic during iteration even when the network topology remains static. To address these challenges, we extend the consideration of IM to a broader scenario with dynamic node individual gains, leveraging causality techniques. In our paper, we introduce a Causal Influence Maximization (CauIM) framework and develop two algorithms, G-CauIM and A-CauIM, where the latter incorporates a novel acceleration technique. Theoretically, we establish the generalized lower bound of influence spread and provide robustness analysis. Empirically, in synthetic and real-world experiments, we demonstrate the effectiveness and robustness of our algorithms.

Details

1009240
Title
Unveiling Environmental Sensitivity of Individual Gains in Influence Maximization
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 10, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-11
Milestone dates
2023-01-28 (Submission v1); 2024-05-01 (Submission v2); 2024-12-10 (Submission v3)
Publication history
 
 
   First posting date
11 Dec 2024
ProQuest document ID
2771185965
Document URL
https://www.proquest.com/working-papers/unveiling-environmental-sensitivity-individual/docview/2771185965/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-12
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic