Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

RFID systems are often used in industry to reduce costs, increase process efficiency and minimize human intervention. The challenge is to design an RFID system before it is implemented in a specific environment in the shortest possible time and at minimum cost while maintaining the accuracy of the results. In this paper, a new approach to predicting indoor UHF RFID signal coverage is presented. It is based on a graphical ray tracing method. Simulations are performed based on spatial analysis of the illumination of a 3D indoor environment created from a 2D floor plan. The results show a heat map representing the predicted RSSI radio signal levels using a color range. The approach is validated by comparison with the results of the empirical Multi-Wall model. The time complexity of the approach is presented. The proposed approach is able to generate a heat map with the accuracy of the empirical Multi-Wall model. The interior room equipment required to refine the results ought to be investigated in the future.

Details

Title
Simulation of Radio Signal Propagation for UHF RFID Technology in an Indoor Environment Using Ray Tracing (Graphics) Method
Author
Straka, Tomas  VIAFID ORCID Logo  ; Lukas Vojtech  VIAFID ORCID Logo  ; Neruda, Marek  VIAFID ORCID Logo 
First page
11065
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771650767
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.