Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Network traffic analysis, and specifically anomaly and attack detection, call for sophisticated tools relying on a large number of features. Mathematical modeling is extremely difficult, given the ample variety of traffic patterns and the subtle and varied ways that malicious activity can be carried out in a network. We address this problem by exploiting data-driven modeling and computational intelligence techniques. Sequences of packets captured on the communication medium are considered, along with multi-label metadata. Graph-based modeling of the data are introduced, thus resorting to the powerful GRALG approach based on feature information granulation, identification of a representative alphabet, embedding and genetic optimization. The obtained classifier is evaluated both under accuracy and complexity for two different supervised problems and compared with state-of-the-art algorithms. We show that the proposed preprocessing strategy is able to describe higher level relations between data instances in the input domain, thus allowing the algorithms to suitably reconstruct the structure of the input domain itself. Furthermore, the considered Granular Computing approach is able to extract knowledge on multiple semantic levels, thus effectively describing anomalies as subgraphs-based symbols of the whole network graph, in a specific time interval. Interesting performances can thus be achieved in identifying network traffic patterns, in spite of the complexity of the considered traffic classes.

Details

Title
Graph-Based Multi-Label Classification for WiFi Network Traffic Analysis
Author
Granato, Giuseppe 1 ; Martino, Alessio 2   VIAFID ORCID Logo  ; Baiocchi, Andrea 1   VIAFID ORCID Logo  ; Rizzi, Antonello 1   VIAFID ORCID Logo 

 Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Via Eudossiana 32, 00184 Rome, Italy 
 Department of Business and Management, LUISS University, Viale Romania 32, 00197 Rome, Italy 
First page
11303
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771650888
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.