Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An object detection pipeline comprises a camera that captures the scene and an object detector that processes these images. The quality of the images directly affects the performance of the object detector. Current works focus on independently improving the image quality or object detection models but neglect the importance of joint optimization of the two subsystems. This paper aims to tune the detection throughput and accuracy of existing object detectors in the remote sensing scenario by optimizing the input images tailored to the object detector. We empirically analyze the influence of two selected camera calibration parameters (camera distortion correction and gamma correction) and five image parameters (quantization, compression, resolution, color model, and additional channels) for these applications. For our experiments, we utilize three Unmanned Aerial Vehicle (UAV) data sets from different domains and a mixture of large and small state-of-the-art object detector models to provide an extensive evaluation of the influence of the pipeline parameters. Finally, we realize an object detection pipeline prototype on an embedded platform for a UAV and give a best practice recommendation for building object detection pipelines based on our findings. We show that not all parameters have an equal impact on detection accuracy and data throughput. Using a suitable compromise between parameters, we can achieve higher detection accuracy for lightweight object detection models while keeping the same data throughput.

Details

Title
Comprehensive Analysis of the Object Detection Pipeline on UAVs
Author
Varga, Leon Amadeus  VIAFID ORCID Logo  ; Koch, Sebastian; Zell, Andreas
First page
5508
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2771659604
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.