It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Malaysian government implemented the Movement Control Order (MCO) from March 18 to May 13, 2020, in an effort to curb the coronavirus disease outbreak that had spread throughout the nation. Utilizing data from GOSAT, GOSAT-2, OCO-2, OCO-3, and TROPOMI, the total column-averaged dry-air mole fraction of carbon dioxide and methane (referred as XCO2 and XCH4) is employed to examine the patterns of both gases throughout the MCO as well as from the same period the prior and following year. The Inverse Distance Weighting (IDW) interpolation method is utilized in mapping the XCO2 and XCH4 for the industrial areas in Peninsular Malaysia. The results revealed that even MCO is implemented, the XCO2 and XCH4 in the industrial areas are increasing year by year. By using satellites data, the XCO2 and XCH4 from large areas can be monitored continuously.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Ta’zim, Malaysia; Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Ta’zim, Malaysia
2 Department of Geoinformation, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Ta’zim, Malaysia