Abstract

Superconductivity in the cuprates is found to be intertwined with charge and spin density waves. Determining the interactions between the different types of order is crucial for understanding these important materials. Here, we elucidate the role of the charge density wave (CDW) in the prototypical cuprate La1.885Sr0.115CuO4, by studying the effects of large magnetic fields (H) up to 24 Tesla. At low temperatures (T), the observed CDW peaks reveal two distinct regions in the material: a majority phase with short-range CDW coexisting with superconductivity, and a minority phase with longer-range CDW coexisting with static spin density wave (SDW). With increasing magnetic field, the CDW first grows smoothly in a manner similar to the SDW. However, at high fields we discover a sudden increase in the CDW amplitude upon entering the vortex-liquid state. Our results signify strong coupling of the CDW to mobile superconducting vortices and link enhanced CDW amplitude with local superconducting pairing across the H − T phase diagram.

Superconductivity in the cuprates is known to be intertwined with charge and spin density waves. Here, the authors study the prototypical cuprate La1.885Sr0.115CuO4 via x-ray scattering and discover a sudden increase in the charge-density-wave amplitude upon entering the superconducting-vortex-liquid state at high magnetic field.

Details

Title
Enhanced charge density wave with mobile superconducting vortices in La1.885Sr0.115CuO4
Author
Wen, J.-J. 1   VIAFID ORCID Logo  ; He, W. 2   VIAFID ORCID Logo  ; Jang, H. 3   VIAFID ORCID Logo  ; Nojiri, H. 4   VIAFID ORCID Logo  ; Matsuzawa, S. 4 ; Song, S. 5   VIAFID ORCID Logo  ; Chollet, M. 5 ; Zhu, D. 5 ; Liu, Y.-J. 6   VIAFID ORCID Logo  ; Fujita, M. 4   VIAFID ORCID Logo  ; Jiang, J. M. 7   VIAFID ORCID Logo  ; Rotundu, C. R. 1   VIAFID ORCID Logo  ; Kao, C.-C. 8 ; Jiang, H.-C. 1   VIAFID ORCID Logo  ; Lee, J.-S. 6   VIAFID ORCID Logo  ; Lee, Y. S. 7   VIAFID ORCID Logo 

 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Department of Materials Science and Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); PAL-XFEL, Pohang Accelerator Laboratory, Gyeongbuk, South Korea (GRID:grid.49100.3c) (ISNI:0000 0001 0742 4007) 
 Tohoku University, Institute for Materials Research, Sendai, Japan (GRID:grid.69566.3a) (ISNI:0000 0001 2248 6943) 
 SLAC National Accelerator Laboratory, Linac Coherent Light Source, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
 SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Department of Applied Physics, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
 SLAC National Accelerator Laboratory, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771) 
Pages
733
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774722908
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.