Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell–cell communication, opens new therapeutic perspectives.

Details

Title
The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives
Author
Allamand, Alizée 1   VIAFID ORCID Logo  ; Piechowiak, Teresa 2 ; Lièvremont, Didier 1 ; Rohmer, Michel 1   VIAFID ORCID Logo  ; Grosdemange-Billiard, Catherine 1 

 Laboratoire de Chimie et Biochimie de Molécules Bioactives—Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 Rue Blaise Pascal, 67081 Strasbourg, France 
 Laboratoire de Chimie et Biochimie de Molécules Bioactives—Université de Strasbourg/CNRS, UMR 7177, Institut Le Bel, 4 Rue Blaise Pascal, 67081 Strasbourg, France; Unité de Chimie des Biomolécules, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75724 Paris, France 
First page
1403
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774938517
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.