Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid development of artificial intelligence and the Internet of Things, there is an explosion of available data for processing and analysis in any domain. However, signal processing efficiency is limited by the Von Neumann structure for the conventional computing system. Therefore, the design and construction of artificial synapse, which is the basic unit for the hardware-based neural network, by mimicking the structure and working mechanisms of biological synapses, have attracted a great amount of attention to overcome this limitation. In addition, a revolution in healthcare monitoring, neuro-prosthetics, and human–machine interfaces can be further realized with a flexible device integrating sensing, memory, and processing functions by emulating the bionic sensory and perceptual functions of neural systems. Until now, flexible artificial synapses and related neuromorphic systems, which are capable of responding to external environmental stimuli and processing signals efficiently, have been extensively studied from material-selection, structure-design, and system-integration perspectives. Moreover, low-dimensional materials, which show distinct electrical properties and excellent mechanical properties, have been extensively employed in the fabrication of flexible electronics. In this review, recent progress in flexible artificial synapses and neuromorphic systems based on low-dimensional materials is discussed. The potential and the challenges of the devices and systems in the application of neuromorphic computing and sensory systems are also explored.

Details

Title
Low-Dimensional-Materials-Based Flexible Artificial Synapse: Materials, Devices, and Systems
Author
Lu, Qifeng 1 ; Zhao, Yinchao 1 ; Huang, Long 2 ; An, Jiabao 2 ; Zheng, Yufan 2 ; Yap, Eng Hwa 3   VIAFID ORCID Logo 

 School of CHIPS, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China 
 School of Intelligent Manufacturing Ecosystem, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China 
 School of Robotics, XJTLU Entrepreneur College (Taicang), Xi’an Jiaotong-Liverpool University, 111 Taicang Avenue, Taicang, Suzhou 215488, China 
First page
373
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774951004
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.