Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of infrared (IR) and visible image fusion is to generate a more informative image for human observation or some other computer vision tasks. The activity-level measurement and weight assignment are two key parts in image fusion. In this paper, we propose a novel IR and visible fusion method based on the principal component analysis network (PCANet) and an image pyramid. Firstly, we use the lightweight deep learning network, a PCANet, to obtain the activity-level measurement and weight assignment of IR and visible images. The activity-level measurement obtained by the PCANet has a stronger representation ability for focusing on IR target perception and visible detail description. Secondly, the weights and the source images are decomposed into multiple scales by the image pyramid, and the weighted-average fusion rule is applied at each scale. Finally, the fused image is obtained by reconstruction. The effectiveness of the proposed algorithm was verified by two datasets with more than eighty pairs of test images in total. Compared with nineteen representative methods, the experimental results demonstrate that the proposed method can achieve the state-of-the-art results in both visual quality and objective evaluation metrics.

Details

Title
Infrared and Visible Image Fusion Method Based on a Principal Component Analysis Network and Image Pyramid
Author
Li, Shengshi 1 ; Zou, Yonghua 2 ; Wang, Guanjun 2   VIAFID ORCID Logo  ; Lin, Cong 1   VIAFID ORCID Logo 

 School of Information and Communication Engineering, Hainan University, Haikou 570228, China 
 School of Information and Communication Engineering, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China 
First page
685
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774970267
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.