Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel approach for dynamic microwave modulation is proposed in the form of reconfigurable resonant circuits. This result is obtained through the monolithic integration of double split ring resonators (DSRRs) with microelectromechanical actuators (MEMS) for geometrical tuning. Two configurations were analyzed to achieve a controlled deformation of the DSRRs’ metamaterial geometry by mutual rotation or extrusion along the azimuthal direction of the two constituent rings. Then, the transfer function was numerically simulated for a reconfigurable MEMS–DSRR hybrid architecture where the DSRR is embedded onto a realistic piezo actuator chip. In this case, a 370 MHz resonance frequency shift was obtained under of a 170 µm extrusion driven by a DC voltage. These characteristics in combination with a high Q factor and dimensions compatible with standard CMOS manufacturing techniques provide a step forward for the production of devices with applications in multiband telecommunications and wireless power transfer and in the IoT field.

Details

Title
Reconfigurable Split Ring Resonators by MEMS-Driven Geometrical Tuning
Author
Leo, Angelo 1   VIAFID ORCID Logo  ; Bramanti, Alessandro Paolo 2   VIAFID ORCID Logo  ; Giusti, Domenico 3 ; Quaglia, Fabio 3 ; Maruccio, Giuseppe 1   VIAFID ORCID Logo 

 Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, Institute of Nanotechnology CNR-Nanotec, INFN Sezione di Lecce, University of Salento, Via per Monteroni, 73100 Lecce, Italy 
 System Research and Applications, Silicon Biotech, Lecce Lab, STMicroelectronics S.r.l., c/o Ecotekne, Via per Monteroni 165, 73100 Lecce, Italy 
 Analog MEMS and Sensors Product Group, STMicroelectronics S.r.l., Via Tolomeo 1, 20100 Cornaredo, Italy 
First page
1382
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774973479
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.