Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

By 11 March 2020, the phrase “COVID-19” had officially entered everyday life across most of the word. Each level of education suddenly faced new changes and new challenges. Emergency remote teaching became widespread, and new methodologies to deliver classes and courses were adopted by educational institutions. In this paper, we focus on the impact of the remote learning experience of engineering students enrolled at the Politecnico di Milano. The subjects were recruited from all engineering courses from the first to the fifth year and were asked to complete a multidimensional survey. The survey featured 66 items regarding the participants’ perceptions of the challenges of emergency remote teaching compared with pre-COVID-19 in-person teaching. The questionnaire addressed six dimensions: the organization of emergency remote teaching, subjective well-being, metacognition, self-efficacy, identity, and socio-demographic information. In this paper, we describe the entire survey and discuss a preliminary analysis. Using Cronbach’s alpha test, a confirmatory factor analysis, and the t-test, we performed a more in-depth analysis concerning the outcomes of metacognition and self-efficacy. The data analysis suggested a small, unexpected change in the metacognition strategies. The students, in some regards, improved their learning strategies. Some other answers underlined their appreciation of the courses’ organization and the lack of relationships with their peers and teachers.

Details

Title
An Extensive Questionnaire about Metacognition during Emergency Remote Teaching Involving More Than 3000 Engineering Students
Author
Mazzola, Roberto 1   VIAFID ORCID Logo  ; Bozzi, Matteo 1   VIAFID ORCID Logo  ; Testa, Italo 2   VIAFID ORCID Logo  ; Sancassani, Susanna 3 ; Zani, Maurizio 1   VIAFID ORCID Logo 

 Department of Physics, Politecnico di Milano, 20133 Milan, Italy 
 Department of Physics “E. Pancini”, University Federico II, 80138 Naples, Italy 
 METID Center, Politecnico di Milano, 20133 Milan, Italy 
First page
2295
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2775010073
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.