Content area

Abstract

This paper is aimed at constructing Rjb for PESMOS and COSMOS database representing the earthquakes triggered in Indian sub-continent. Rjb, by definition, is the shortest distance from the site to the horizontal projection of rupture plane and that can be constructed using simple geometry provided the required information is available. In practice, the uncertainty associated with this information offers several challenges which are addressed in this paper. First, a vector algebra-based approach is proposed for estimating epicentral distance and azimuth. Second, a set of empirical relationships is proposed to estimate the rupture plane from the moment magnitude using a dataset of 354 earthquakes based on tectonic settings and focal mechanisms. Third, a step-by-step process of computing Rjb is developed considering the uncertainty in the location of hypocenter on the rupture plane. Two approaches are considered for this purpose, namely, (i) areal grid representation and (ii) hypocenter distribution model. While the former assumes equally likely hypocenter over the rupture plane, the latter requires construction of hypocenter distribution model from the prior database. Fourth, the process is extended to account for the uncertainty in available information of strike and/or dip. The proposed framework is assessed against a total of 4247 records from PEER database with Rjb reported based on geometry and location of rupture plane. The framework is finally applied to compute Rjb associated with PESMOS (474 records) and COSMOS (148 records) database, and the results are expected to serve as a valuable resource while constructing GMPEs of shallow focused earthquakes.

Details

Title
On the construction of Joyner-Boore distance (Rjb) for PESMOS and COSMOS databases
Author
Vats, Falak 1 ; Basu, Dhiman 1 

 Indian Institute of Technology Gandhinagar, Department of Civil Engineering, Gandhinagar, India (GRID:grid.462384.f) (ISNI:0000 0004 1772 7433) 
Pages
173-202
Publication year
2023
Publication date
Feb 2023
Publisher
Springer Nature B.V.
ISSN
13834649
e-ISSN
1573157X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2775865071
Copyright
© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.