Abstract

An ultra-small mid-infrared plasmonic nanowire laser based on n-doped GaN metallic material is proposed and studied by the finite-difference time-domain method. In comparison with the noble metals, nGaN is found to possess superior permittivity characteristics in the mid-infrared range, beneficial for generating low-loss surface plasmon polaritons and achieving strong subwavelength optical confinement. The results show that at a wavelength of 4.2 µm, the penetration depth into the dielectric is substantially decreased from 1384 to 163 nm by replacing Au with nGaN, and the cutoff diameter of nGaN-based laser is as small as 265 nm, only 65% that of the Au-based one. To suppress the relatively large propagation loss induced by nGaN, an nGaN/Au-based laser structure is designed, whose threshold gain has been reduced by nearly half. This work may pave the way for the development of miniaturized low-consumption mid-infrared lasers.

Details

Title
Ultra-small low-threshold mid-infrared plasmonic nanowire lasers based on n-doped GaN
Author
Zheng, Jiahui 1 ; Yan, Xin 1 ; Zhang, Xia 1 ; Ren, Xiaomin 1 

 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, 100876, Beijing, China (GRID: grid.31880.32) (ISNI: 0000 0000 8780 1230) 
Pages
14
Section
Research
Publication year
2023
Publication date
Dec 2023
Publisher
Springer Nature B.V.
ISSN
19317573
e-ISSN
1556276X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2777173056
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.