Abstract

Background

Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI).

Methods

The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1β (IL-1β), and C–C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM.

Results

Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1β signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1β, and CCL2 neutralization, or ICS treatment.

Conclusions

Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).

Details

Title
Long-term exposure to house dust mites accelerates lung cancer development in mice
Author
Wang, Dongjie; Li, Wen; Albasha, Natalie; Griffin, Lindsey; Chang, Han; Amaya, Lauren; Ganguly, Sneha; Zeng, Liping; Bora Keum; González-Navajas, José M; Levin, Matt; AkhavanAghdam, Zohreh; Snyder, Helen; Schwartz, David; Tao, Ailin; Boosherhri, Laela M
Pages
1-24
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
ISSN
17569966
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2777784504
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.