It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Circular RNAs (circRNAs) are highly enriched in the central nervous system and have been implicated in neurodegenerative diseases. However, whether and how circRNAs contribute to the pathological processes induced by traumatic brain injury (TBI) has not been fully elucidated.
Methods
We conducted a high-throughput RNA sequencing screen for well-conserved, differentially expressed circRNAs in the cortex of rats subjected to experimental TBI. Circular RNA METTL9 (circMETTL9) was ultimately identified as upregulated post-TBI and further characterized by RT-PCR and agarose gel electrophoresis, Sanger sequencing, and RNase R treatment. To examine potential involvement of circMETTL9 in neurodegeneration and loss of function following TBI, circMETTL9 expression in cortex was knocked-down by microinjection of a shcircMETTL9 adeno-associated virus. Neurological functions were evaluated in control, TBI, and TBI-KD rats using a modified neurological severity score, cognitive function using the Morris water maze test, and nerve cell apoptosis rate by TUNEL staining. Pull-down assays and mass spectrometry were conducted to identify circMETTL9-binding proteins. Co-localization of circMETTL9 and SND1 in astrocytes was examined by fluorescence in situ hybridization and immunofluorescence double staining. Changes in the expression levels of chemokines and SND1 were estimated by quantitative PCR and western blotting.
Results
CircMETTL9 was significantly upregulated and peaked at 7 d in the cerebral cortex of TBI model rats, and it was abundantly expressed in astrocytes. We found that circMETTL9 knockdown significantly attenuated neurological dysfunction, cognitive impairment, and nerve cell apoptosis induced by TBI. CircMETTL9 directly bound to and increased the expression of SND1 in astrocytes, leading to the upregulation of CCL2, CXCL1, CCL3, CXCL3, and CXCL10, and ultimately to enhanced neuroinflammation.
Conclusion
Altogether, we are the first to propose that circMETTL9 is a master regulator of neuroinflammation following TBI, and thus a major contributor to neurodegeneration and neurological dysfunction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer