Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Temperate forests are key to the balance and provision of hydrological and environmental services. Currently, these forests are subject to human alterations as well as to the effects of global change, including warming, variability, deforestation, and forest fires. As a consequence, the hydrological balance has been modified. The present study simulates the effects of climate change and land use change on the hydrological balance of micro-watersheds in Mexico using the hydrological model Water Evaluation and Planning (WEAP). The land use change between 1995 and 2021 was estimated to establish a baseline. Climate scenario SSP585 was projected using three global models, MPI-ESM1-2-LR, HadGEM3-GC31-LL, and CNRM-CM6-1 by the 2081–2100 horizon, along with two scenarios of land use change: one with forest permanence and another with loss of forest cover and increased forest fires. Results indicate that future climatic conditions will modify the hydrological balance at the microbasin level. Even with positive conditions of forest permanence, increases in surface runoff of 124% (CNRM), 35% (HadGEM3), and 13% (MPI) are expected. The projections of coverage loss and fires showed surface runoff increases of 338% (CNRM), 188% (HadGEM3), and 143% (MPI). In the high areas of the microbasins where temperate forest predominates, climatic variations could be contained. If the forest is conserved, surface runoff decreases by −70% (CNRM), −87% (HadGEM3), and −89% (MPI). Likewise, the moisture in the soil increases. In areas with temperate forests, there will be modifications of the hydrological balance mainly due to the increase in evapotranspiration (due to the increase in temperature and precipitation). This will cause a significant decrease in flow and interflow. The alteration of these flows will decrease water availability in soil for infiltration. It is expected that the availability of hydrological and environmental services will be compromised in the entire study area due to climate change.

Details

Title
The Hydrological Balance in Micro-Watersheds Is Affected by Climate Change and Land Use Changes
Author
Ruiz-García, Víctor H 1 ; Asensio-Grima, Carlos 2   VIAFID ORCID Logo  ; Ramírez-García, A Guillermo 3 ; Alejandro Ismael Monterroso-Rivas 4   VIAFID ORCID Logo 

 División de Ciencias Forestales, Universidad Autónoma Chapingo, Texcoco 56230, Mexico 
 Departamento de Agronomía, Universidad de Almería, 04120 Almería, Spain 
 Centro Regional Universitario del Noroeste, Universidad Autónoma Chapingo, Sonora 85000, Mexico 
 Departamento de Suelos, Universidad Autónoma Chapingo, Texcoco 56230, Mexico 
First page
2503
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779441826
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.