Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a new trajectory tracking control scheme for the four mecanums wheel omnidirectional mobile robot (FM-OMR). Considering the influence of uncertainty on tracking accuracy, a self-organizing fuzzy neural network approximator (SOT1FNNA) is proposed to estimate the uncertainty. In particular, since the structure of traditional approximation network is preset, it will cause problems such as input constraints and rule redundancy, resulting in low adaptability of the controller. Therefore, a self-organizing algorithm including rule growth and local access is designed according to the tracking control requirements of omnidirectional mobile robots. In addition, a preview strategy (PS) based on Bezier curve trajectory re-planning is proposed to solve the problem of tracking curve instability caused by the lag of tracking starting point. Finally, the simulation verifies the effectiveness of this method in tracking and trajectory starting point optimization.

Details

Title
Trajectory Tracking Control Method for Omnidirectional Mobile Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy
Author
Zhao, Tao  VIAFID ORCID Logo  ; Peng, Qin; Zhong, Yuzhong
First page
248
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779461797
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.