Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Plant production, soil quality, and a sustainable environment depend on climate change. Drought is a multidimensional stressor that seriously affects plant production. The most sensitive plant to climate change is the invasive goldenrod (Solidago canadensis L.), which has potentially high-value materials that can be used to develop a novel approach to controlling its spread. This study aimed to evaluate the impact of different applications (NPK-chemical fertilizers (T1) as control, nano-silicon (T2), nano-NPK (T3), nano-zeolite-loaded nitrogen (T4), and mixed nano-silicon with nano-zeolite-loaded nitrogen (T5)) on plant growth, flowering, chemical composition, yield, essential oil (EO) productivity, and tolerance of water deficit under newreclaimed soil. The results show that T5 application enhanced morphological traits and photosynthetic parameters (photosynthetic rate, CO2 concentration, and water use efficiency while reducing transpiration rate) in goldenrod plants. Moreover, it promoted the plant nutrients uptake compared to the control. The highest total carbohydrate, flavonoid, and phenol contents, as well as a significant amount of the phytohormone indole-3-acetic acid (IAA), were obtained from the T5 application. Conversely, abscisic acid (ABA) and antioxidant enzymes of catalase (CAT) and superoxide dismutase (SOD) appeared with the highest amounts in control plants (T1).Th interaction effect of T5 and drought stress is indicated by increased EO productivity and therapeutic properties.Previous results provide a way to elevate drought stress resistance for the safety production of S. canadensis and improve their qualitative and quantitative trials as economical solutions to achieve an environmental approach to control their spread.

Details

Title
Exogenous Appliance of Nano-Zeolite and Nano-Silicon Elevate Solidago canadensis Invasive Plant Tolerance to Water Deficiency
Author
Othman, Eman Z 1   VIAFID ORCID Logo  ; El-Attar, Asmaa B 1 ; El-Bahbohy, Reham M 2 ; Abd El-Khalek, Sarah N 3 ; Morgan, Sherif H 2 ; Mahmoud, Abdel Wahab M 2   VIAFID ORCID Logo 

 Department of Ornamental Horticulture, Faculty of Agriculture, Cairo University, Giza 12613, Egypt 
 Department of Agricultural Botany, Plant Physiology Division, Faculty of Agriculture, Cairo University, Giza 12613, Egypt 
 Department of Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt 
First page
172
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23117524
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779492795
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.