Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Ophraella communa Lesage is a specific biological control agent of the invasive weed Ambrosia artemisiifolia L. Understanding the molecular mechanism by which O. communa recognizes A. artemisiifolia will help improve its bio-control effect. Odorant-binding proteins (OBPs) play a vital role in insect olfactory perception. In this study, the sequence and expression characteristics of OcomOBP7 were analyzed. We obtained the pure protein of OcomOBP7 by prokaryotic expression and purification, and its binding characteristics were analyzed using a fluorescence competitive binding assay. Finally, we verified the function of OcomOBP7 in vivo using RNAi combined with an electroantennography (EAG) assay. The results showed that the binding ability of OcomOBP7 was broad-spectrum and was involved in the host plant localization of O. communa.

Abstract

The olfactory system plays a key role in various insect behaviors, and odorant-binding proteins participate in the first step of the olfactory process. Ophraella communa Lesage is an oligophagous phytophagous insect that is a specific biological control agent for Ambrosia artemisiifolia L. The leaf beetle must identify and locate A. artemisiifolia through olfaction; however, its odorant-binding protein (OBP) function has not yet been reported. In this study, OcomOBP7 was cloned, and its tissue expression profile and binding ability were analyzed using RT-qPCR and fluorescence binding assays, respectively. Sequence analysis demonstrated that OcomOBP7 belongs to the classical OBP family. The RT-qPCR results showed that OcomOBP7 was specifically expressed in the antennae, indicating that OcomOBP7 may be involved in chemical communication. The fluorescence binding assay showed that OcomOBP7 has an extensive binding ability to alkenes. The electroantennography experiments showed that O. communa antennal response to α-pinene and ocimene decreased significantly after interference because the two odors specifically bound to OcomOBP7. In summary, α-pinene and ocimene are odorant ligands corresponding to OcomOBP7, indicating that OcomOBP7 is involved in the chemical recognition of A. artemisiifolia. Our study lays a theoretical foundation for research into O. communa attractants, which is helpful for the better biological control of A. artemisiifolia by O. communa.

Details

Title
Characterization and Functional Analysis of OcomOBP7 in Ophraella communa Lesage
Author
Yang, Yue 1 ; Ma, Chao 2   VIAFID ORCID Logo  ; Zhang, Yan 2 ; Hong-Song, Chen 3   VIAFID ORCID Logo  ; Jian-Ying, Guo 2 ; Ting-Hui, Liu 4 ; Zhong-Shi, Zhou 3 

 College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China 
 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China 
 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China; Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China 
 College of Plant Protection, Hebei Agricultural University, Baoding 071001, China 
First page
190
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779497219
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.