Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Iron (Fe) and (Mn) are essential for the plant but are toxic when in excess. Vacuolar iron transporters (VITs) are involved in plant metal storage and detoxication. In this study, we screened two soybean cultivars (HN51 and SN37) with different responses to iron stress. From HN51 and SN37, we identified a new gene GmVIT1, for which expression is closely related to iron stress response by transcriptomic and quantitative analysis. We obtained GmVIT1 and GmVIT1 promoter from the iron deficiency-tolerant soybean variety Heinong51. Sequence analysis showed that GmVIT1 contained a conserved 170-residue VIT domain and localized at the tonoplast. Moreover, GmVIT1 is expressed in soybean leaves, stems, and roots. The expression of GmVIT1 was significantly induced by excessive Fe/Mn in leaves and stems. GUS assay showed that excess Fe/Mn enhanced GmVIT1 promoter activity. Furthermore, overexpression of GmVIT1 in Arabidopsis seedlings showed reduced phytotoxic effects induced by excess Fe/Mn stress, including yellowing in leaves, decreased chlorophyll content, and accumulated MDA. GmVIT1 overexpression in Arabidopsis showed relatively higher soluble sugar content and SOD, POD, and CAT activity. In addition, the ferric reductase activity in GmVIT1 overexpression in Arabidopsis decreased under excess Fe, while it increased under excess Mn. By integrating all these results, we found that GmVIT1 plays a vital role in plant response to excess Fe/Mn. The results showed that GmVIT1 was worthy of metal homeostasis mechanism research in plants and could be applied in the metal toxic-tolerance improvement in crops.

Details

Title
Soybean GmVIT1 Gene Confers Plant Tolerance to Excess Fe/Mn Stress
Author
Li, Tong 1 ; Xue-Meng, Zhang 1 ; Jia-Lu, Gao 1 ; Wang, Ling 2 ; Liang, Si 1 ; Yong-Jun, Shu 3   VIAFID ORCID Logo  ; Chang-Hong, Guo 3 ; Yong-Cai, Lai 2 ; Ying-Dong Bi 2 ; Dong-Lin, Guo 1   VIAFID ORCID Logo 

 College of Life Science and Technology, Harbin Normal University, Harbin 150025, China 
 Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China 
 Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025, China 
First page
384
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779505369
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.