Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

All-inorganic CsPbX3 perovskite material not only has the benefits of advanced light absorption coefficient, long carrier lifetime, and simple preparation process of organic–inorganic perovskite materials but it also maintains excellent stability under the erosion of damp heat. Stability is the premise of its industrialization, so all-inorganic perovskite is undoubtedly a very competitive direction for the development of perovskite materials. However, there are still many defects in the all-inorganic perovskite thin films, and it is difficult to obtain high power conversion efficiency (PCE). This review systematically summarizes additive engineering, solvent engineering, and interface engineering methods to promote the thin film property for a high PCE in recent years.

Details

Title
Recent Progress on Boosting the Perovskite Film Quality of All-Inorganic Perovskite Solar Cells
Author
Chen, Ying 1   VIAFID ORCID Logo  ; Li, Fuqiang 1 ; Zhang, Man 2 ; Yang, Zhenyuan 1 

 Hubei Engineering Technology Research Center of Energy Photoelectric Device and System, Hubei University of Technology, Wuhan 430068, China; School of Science, Hubei University of Technology, Wuhan 430068, China 
 School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China 
First page
281
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779527102
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.