Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zeolites are of great interest to the scientific and industrial communities due to their interesting catalytic properties, such as high specific area, shape selectivity, and thermal and hydrothermal stability. For this reason, zeolites have been intensively studied and applied in several reactions of great industrial interest. However, the size of zeolite micropores may hinder the diffusion of bulky molecules in the pore system, limiting the use of zeolites in some reactions/applications that use bulky molecules. One way to address this limitation is to generate secondary porosity (in the range of supermicropores, mesopores and/or macropores) in such a way that it connects with the existing micropores, creating a hierarchical pore system. There are different hierarchical approaches; however, most are not economically viable and are complicated/time-consuming. Alkaline treatment has been highlighted in recent years due to its excellent results, simplicity, speed and low cost. In this review, we highlight the importance of alkaline treatment in the generation of secondary porosity and the parameters that influence alkaline treatment in different zeolitic structures. The properties and catalytic performance of hierarchical zeolites prepared by alkaline treatment are extensively discussed. It is expected that this approach will be useful for understanding how alkaline treatment acts on different hierarchical structures and will thus open doors to achieve other hierarchical zeolites by this method.

Details

Title
Hierarchical Zeolite Synthesis by Alkaline Treatment: Advantages and Applications
Author
Oliveira, Daniele S 1 ; Lima, Rafael B 1 ; Sibele B C Pergher 1   VIAFID ORCID Logo  ; Caldeira, Vinícius P S 2   VIAFID ORCID Logo 

 LABPEMOL, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil 
 LACAM, Chemistry Department, State University of Rio Grande do Norte, Mossoró 59610-210, RN, Brazil 
First page
316
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779532204
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.