Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) is a type of high energy explosive, its application in weapon systems is limited by its high mechanical sensitivity. At the same time, 1,1-diamino-2,2-dinitroethylene (FOX-7) is a famous insensitive explosive. The preparation of RDX@FOX-7 composites can meet the requirements, high energy and low sensitivity, of the weapon systems. It is difficult for the reactor to achieve uniform quality of composite material, which affects its application performance. Based on the principle of solvent-anti-solvent, the recrystallization process was precisely controlled by microfluidic technology. The RDX@FOX-7 composites with different mass ratios were prepared. At the mass ratio of 10%, the RDX@FOX-7 composites are ellipsoid of about 15 μm with uniform distribution and quality. The advantages of microscale fabrication of composite materials were verified. The results of structure characterization showed that there is no new bond formation in RDX@FOX-7, but the distribution of two components on the surface of the composite was uniform. Based on the structure characterization, we established the structure model of RDX@RDX-7 and speculated the formation process of the composites in microscale. With the increase of FOX-7 mass ratios, the melting temperature of RDX was advanced, the thermal decomposition peak of RDX changed to double peaks, and the activation energy of RDX@FOX-7 composite decreased. These changes were more pronounced between 3 and 10% but not between 10 and 30%. The ignition delay time of RDX@FOX-7 was shorter than that of RDX and FOX-7. RDX@FOX-7 burned more completely than RDX indicating that FOX-7 can assist heat transfer and improve the combustion efficiency of RDX.

Details

Title
Preparation and Properties of RDX@FOX-7 Composites by Microfluidic Technology
Author
Yu, Jin; Hanyu Jiang; Xu, Siyu; Li, Heng; Wang, Yiping; Yao, Ergang; Pei, Qing; Li, Meng; Zhang, Yang; Zhao, Fengqi
First page
167
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779533086
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.