Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Strontium (Sr) and sodium (Na) are the most used modifiers in the aluminum casting industry. Both lose their concentration (fade) during holding in the melting furnace. Three types of chemical reactions in the melt may cause modifier fading: vaporizing, oxidizing, or reacting with some other elements from the melt. Due to Na and Sr’s very low vapor pressure, their vaporization from the aluminum melt was excluded as a reason for the modifiers’ fading. Oxidation looks like the major chemical reaction that causes the fading of Na and Sr from an aluminum melt. The present paper aimed to quantify the fading of Na and Sr in an Al–Si–Cu–Mg alloy. The loss of modifiers (Na and Sr) during melt holding in a furnace can be analytically quantified using equations taken from the literature. The calculated surface reaction rate constant (ks) can estimate the modifier’s loss during melt holding in industrial and laboratory furnaces.

Details

Title
Quantification of Modifiers Fading during Melt Holding in the Aluminum Casting Furnace
Author
Djurdjevic, Mile 1 ; Manasijevic, Srecko 2   VIAFID ORCID Logo  ; Smiljanic, Slavko 3 ; Ristic, Marko 4 

 Nemak, 4030 Linz, Austria 
 Lola Institute Ltd., 11000 Belgrade, Serbia 
 Faculty of Technology Zvornik, University of East Sarajevo, 75400 Zvornik, Bosnia and Herzegovina 
 Institute Mihailo Pupin, 11000 Belgrade, Serbia 
First page
191
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779533453
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.