Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cavitation erosion degrades the surface of engineering components when the material is exposed to turbulent fluid flows. Under conditions of local pressure fluctuations, a nucleation of gas or vapor bubbles occurs. If the pressure suddenly drops below the vapor pressure, these bubbles collapse violently when subjected to higher pressure. This collapse is accompanied by the sudden flow of the liquid, which is manifested by stress pulses capable of causing plastic deformations on solid surfaces. Repeating these stress conditions can cause material removal and ultimately failure of the component itself. The present study aims to reduce the negative impact of this phenomenon on the mechanical systems components, using the TIG local surface remelting technique. Cavitation erosion tests were performed in accordance with the ASTM G32-2016 standard on samples taken from a cast high-alloy stainless steel. The alloy response for each melting current value was investigated by measuring mass loss as a function of cavitation attack time and by analyzing the damaged surfaces using optical and scanning electron microscopes. It was highlighted that the TIG remelted layers provide an increase in cavitation erosion resistance of 5–6 times as a consequence of the fine graining and microstructure induced by the technique applied.

Details

Title
Microstructure and Cavitation Damage Characteristics of GX40CrNiSi25-20 Cast Stainless Steel by TIG Surface Remelting
Author
Mitelea, Ion 1 ; Bordeaşu, Ilare 2 ; Cosma, Daniela 1 ; Ion-Dragoș Uțu 1   VIAFID ORCID Logo  ; Crăciunescu, Corneliu Marius 1 

 Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania 
 Department of Mechanical Machines, Equipment and Transports, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr.1, 300222 Timisoara, Romania 
First page
1423
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779534292
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.