Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

When exposed to gradual stresses such as climate warming, species with high plasticity may develop different growth types (morphotypes) adapted to specific ranges of the temperature spectrum, thereby securing their survival in various scenarios. Amblystogenium pacificum is a carabid beetle endemic to the sub-Antarctic Crozet Islands that has two distinctive morphotypes based on body coloration. Here, we measured functional traits related to morphology and biochemical reserves to test whether they were related to morphotype, sex, and altitude (as a proxy for a temperature gradient). We also tested whether distinct functional niches (trait profiles) could be identified based on morphotype, sex, and altitude. We found a positive correlation between altitude and body size as well as higher protein and sugar reserves in females than in males. The body size profile showed the clearest functional response of A. pacificum along the altitudinal gradient, even though darker morphotypes tended to be smaller and more constrained at higher altitudes and females showed limited trait variations at the highest altitude. Hence, our results show mitigated responses of A. pacificum in the temperature–size relationships such that further trait measurements are necessary before using this as a model case to investigate population range shifts in relation to global changes.

Abstract

Phenotypic plasticity can favor the emergence of different morphotypes specialized in specific ranges of environmental conditions. The existence of intraspecific partitioning confers resilience at the species scale and can ultimately determine species survival in a context of global changes. Amblystogenium pacificum is a carabid beetle endemic to the sub-Antarctic Crozet Islands, and it has two distinctive morphotypes based on body coloration. For this study, A. pacificum specimens of functional niches were sampled along an altitudinal gradient (as a proxy for temperature), and some morphological and biochemical traits were measured. We used an FAMD multivariate analysis and linear mixed-effects models to test whether these traits were related to morphotype, altitude, and sexual dimorphism. We then calculated and compared the functional niches at different altitudes and tested for niche partitioning through a hypervolume approach. We found a positive hump-shaped correlation between altitude and body size as well as higher protein and sugar reserves in females than in males. Our functional hypervolume results suggest that the main driver of niche partitioning along the altitudinal gradient is body size rather than morphotype or sex, even though darker morphotypes tended to be more functionally constrained at higher altitudes and females showed limited trait variations at the highest altitude.

Details

Title
Functional Niche Partitioning Occurs over Body Size but Not Nutrient Reserves nor Melanism in a Polar Carabid Beetle along an Altitudinal Gradient
Author
Espel, Diane 1 ; Coux, Camille 2 ; Pertierra, Luis R 3 ; Eymar-Dauphin, Pauline 4 ; Lembrechts, Jonas J 5   VIAFID ORCID Logo  ; Renault, David 1   VIAFID ORCID Logo 

 CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR 6553, University of Rennes, F-35000 Rennes, France 
 CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France; CEFE, University of Montpellier, CNRS, EPHE, IRD, F-34000 Montpellier, France 
 Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa 
 CNRS, LEHNA (Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés), UMR 5023, University of Lyon 1, F-69100 Villeurbanne, France 
 Research Group Plants and Ecosystems (PLECO), University of Antwerp, 2610 Antwerpen, Belgium 
First page
123
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779550128
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.