Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, three-dimensional (3D) laser-scanned point clouds have been broadly applied in many important fields, such as non-contact measurements and reverse engineering. However, it is a huge challenge to efficiently and precisely extract the boundary features of unorganized point cloud data with strong randomness and distinct uncertainty. Therefore, a novel type of boundary extraction method will be developed based on concurrent Delaunay triangular meshes (CDTMs), which adds the vertex-angles of all CDTMs around a common data point together as an evaluation index to judge whether this targeted point will appear at boundary regions. Based on the statistical analyses on the CDTM numbers of every data point, another new type of CDTM-based boundary extraction method will be further improved by filtering out most of potential non-edge points in advance. Then these two CDTM-based methods and popular α-shape method will be employed in conducting boundary extractions on several point cloud datasets for comparatively analyzing and discussing their extraction accuracies and time consumptions in detail. Finally, all obtained results can strongly demonstrate that both these two CDTM-based methods present superior accuracies and strong robustness in extracting the boundary features of various unorganized point clouds, but the statistically improved version can greatly reduce time consumption.

Details

Title
A Novel Type of Boundary Extraction Method and Its Statistical Improvement for Unorganized Point Clouds Based on Concurrent Delaunay Triangular Meshes
Author
He, Xiuzhi 1   VIAFID ORCID Logo  ; Wang, Rongqi 1   VIAFID ORCID Logo  ; Chao, Feng 1 ; Zhou, Xiaoqin 1 

 Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130025, China; School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China 
First page
1915
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779550215
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.