Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pollution of the environment, including water resources, is currently one of the greatest challenges due to emerging new contaminants of anthropogenic origin. Of particular concern are emerging organic pollutants such as pharmaceuticals, endocrine disruptors, and pesticides, but also other industrial pollutants, for example, synthetic dyes. The growing demand for environmentally friendly and economical methods of removing emerging contaminants and synthetic dyes from wastewater resulted in increased interest in the possibility of using techniques based on the application of polymer inclusion membranes (PIMs) for this purpose. PIM-based techniques are promising methods for eliminating emerging contaminants and synthetic dyes from aqueous solutions, including wastewater, due to high efficiency, membranes versatility, ease/low cost of preparation, and high selectivity. This review describes the latest developments related to the removal of various emerging contaminants and synthetic dyes from aqueous solutions using PIMs over the past few years, with particular emphasis on research aimed at increasing the effectiveness and selectivity of PIMs, which may contribute to wider use of these methods in the future.

Details

Title
The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions—A Mini Review
Author
Kaczorowska, Małgorzata A  VIAFID ORCID Logo  ; Bożejewicz, Daria; Witt, Katarzyna
First page
132
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779553947
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.