Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection and tracking has always been one of the important research directions in computer vision. The purpose is to determine whether the object is contained in the input image and enclose the object with a bounding box. However, most object detection and tracking methods are applied to daytime objects, and the processing of nighttime objects is imprecise. In this paper, a spectral-spatial feature enhancement algorithm for nighttime object detection and tracking is proposed, which is inspired by symmetrical neural networks. The proposed method consists of the following steps. First, preprocessing is performed on unlabeled nighttime images, including low-light enhancement, object detection, and dynamic programming. Second, object features for daytime and nighttime times are extracted and modulated with a domain-adaptive structure. Third, the Siamese network can make full use of daytime and nighttime object features, which is trained as a tracker by the above images. Fourth, the test set is subjected to feature enhancement and then input to the tracker to obtain the final detection and tracking results. The feature enhancement step includes low-light enhancement and Gabor filtering. The spatial-spectral features of the target are fully extracted in this step. The NAT2021 dataset is used in the experiments. Six methods are employed as comparisons. Multiple judgment indicators were used to analyze the research results. The experimental results show that the method achieves excellent detection and tracking performance.

Details

Title
Spectral-Spatial Feature Enhancement Algorithm for Nighttime Object Detection and Tracking
Author
Lv, Yan 1 ; Feng, Wei 2 ; Wang, Shuo 2 ; Dauphin, Gabriel 3   VIAFID ORCID Logo  ; Zhang, Yali 2 ; Xing, Mengdao 4 

 The Optoelectronic Information Department, School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China 
 The Department of Remote Sensing Science and Technology, School of Electronic Engineering, Xidian University, Xi’an 710071, China 
 The Laboratory of Information Processing and Transmission, L2TI, Institut Galilée, University Paris XIII, 75013 Villetaneuse, France 
 The Academy of Advanced Interdisciplinary Research, Xidian University, Xi’an 710071, China 
First page
546
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779630260
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.