Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However, SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA) to select the best subset of features in the wrapper-based method for classification purposes. After the performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature combination to maximize classification accuracy and simultaneously minimize the number of selected features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA, compared with other wrapper-based algorithms.

Details

Title
A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study
Author
Yang, Qinwen 1   VIAFID ORCID Logo  ; Gao, Yuelin 2   VIAFID ORCID Logo  ; Song, Yanjie 3   VIAFID ORCID Logo 

 School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China 
 Ningxia Key Laboratory of Intelligent Information and Big Data Processing, Yinchuan 750021, China 
 College of Systems Engineering, National University of Defense Technology, Changsha 410073, China 
First page
316
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779638087
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.